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NONTECHNICAL SUMMARY

A Markovian Decision Process is a process which is observed at
distinct time points to be in some state. After observing the astate
of the system an action is chosen - corresponding to the action (and !
the present state) a cost 1s incurred and the transition probabilities
for the next state are determined. A policy 1s any rule for choosing
actions. Corresponding to each policy there is an expected long run
average cost per unit time. This paper 1s concerned with finding

an optimal policy - i.e. one whose associated average cost is minimal.

For example we might have a tool which wears out with time.
The state of the system could be the length of the tool, and the
possible actions could be either to replace the tool or not Assoclated
with each state there would be an operating cost. Thus a poiicy is a
rule for determining when to replace the tool and an optimal one 1s
one which minimizes the long run average cost.

In the past most of the work in this area has been done under the
assumption that the state space is countable. In this paper we let
the state space be arbitrary. For example, in the tool problem given
above it is natural to let the state space be the continuum of possible
values of the length of the tool

This paper presents sufficient conditions for the existence of an
optimal policy and for it to be of simple type This type - called
stationary deterministic - is or the torm of a tunction mapping the

state space into the action space For example, in the tocl problem




I a stationary deterministic policy would replace whenever the length
I of the tool is in some specified set of real numbers. The method

employed is to treat the average cost problem as a limit of either

f the discounted cost problem or the nondiscounted n-stage problem.
We also show lLow, in a special case, the average cost problem may

be reduced to a discounted cost problem.
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ARBITRARY STATE MARKOVIAN DECISION PROCESSES
Sheldon M. Ross
1, Introduction

We are concerned with a process which is observed at times
t =0,1,2,... and classified into one of a possible number of states.
We let % denote the state space of the process. % is assumed to be
a Borel gubset of a complete separable metric space, and we let B be
the o-algebra of Borel subsets of %. After each classification an
action must be chosen and we let A, assumed finite, denote the set
of all possible actions.

Let {Xt; t =0,1,2,...} and {At; t = 0,1,2,...} denote the
sequence of states and actions; and let St_1 = (XO’AO""xt—l’At-l)'
It is assumed that for every xex, keA there is a known probability
measure P(. Ix,k) on B such that, for some version,

P{ } = P(B|x,k) for every BeR, and all

e13|xt =x, 8, =k, S

Xee1 t t-1
histories S _,. It is also assumed that for every keA, BeB, P(B

k)
is a Baire function on .

Whenever the process is in state x and action k is chosen then
a bounded (expected) cost C(x,k) - assumed, for fixed k, to be a Baire
function in x- is incurred.

A policy R is a set of Baire functions {Dk(st-l'x)}keA satisfying

Dk(st-l’x)'i 0 for all keA, and sz Dk(st-l’x) = 1 for every (St-l'x)'

The interpretation being: 4if at time t the history St-l has been
observed and Xt = x then action k 1s chosen with probability Dk(st—l’x)'
R is said to be stationary 1if Dk(St_l,x) = Dk(x) for every St-l; R 18

said to be stationary deterministic if Dk(x) equals 0 or 1 for all x,k.

T e,




Theorem 1: If there exists a bounded Baire function f(x), xcx and a

n
For any policy R, let ¢(x,R) = lim sup 1/n E. [C(X_,8)|X.=X].
e o t=0 R t’t 0

Thus ¢(x,R) is the expected average cost per unit time when the process
starts in state x and policy R is used,

In [4] , under the assumption that ¥ is denumerable, a number of
results dealing with the average cost criterion were proven. The method ]
employed was to treat the average cost problem as a limit (as the discount
factor approaches unity) of the discounted cost problem. In this paper
we generalize some of these results to arbitrary state spaces. We also
show how to treat the average cost problem as a limit of the n-stage
problem. One of the advantages of this approach is that it enables us r
to determine, for denumerable %, a necessary and sufficient condition
for the existence of a bounded solution to a functional equation which

characterizes the optimal policy.

2s Stationary Deterministic Optimal Policies

The following theorem was originally proven by Derman [2) for the
special case that x is denumerable. The following proof is new; it

makes use of a technique used by Taylor [5].

constant g, such that

(1) g + £(x) = min {C(x,k) + / £(y) dP(y|x,k)} =xex
keA yex

then there exists a stationary deterministic golicy R* such that

g = ¢(x,R*) = min ¢(x,R) for all xex
R




and R* is any policy which, for each x, prescribes an action which
minimizes the right side of (1).

Proof: For any policy R

n
Eg {t-z-l[f(xt) - Ep(£(X) I8, )1} = 0

But

I £(y)de(y|X__;,8, )

EglE(x) s, ]
yex

= C(X,_1sb,_y) + yix £(y)dP(y|X 108, ) = C(X 140, ;)

Iv

min {C(X__, k) + J £(y)dP(y|X _,, 00} - CX .8, o)
keA yex

g+ (X 1) = CXy_yatey)

with equality for R* since R* is defined to take the minimizing action,

Hence
n
2 < ER{tfl[f(xt) -8 - £(X ) +C(X _j,8 )]
n
or
£( ) £ (%) Ly ety
(2) 8 :-ER n - ER n i ER n

with equality for R*, Letting n = and using the fact that f 1is
bounded, we have that g < ¢(R,XO) with equality for R*¥, and for all
possible values of Xo. QED.

Remark: Note that the above proof doesn't make use of the fact that

A is finite or that C(x,k) is bounded.




Let gn(x), n=1,2,,., satisfy

3) gl(x) = mirn C(x,k)
k
8,41 (X) = min {C(x,k) + [ gn(y)dP(ylx.k)}
k yey
n-1

Note that g (x) = min I E_[C(X_,4,)|X, = x]. The following corollary
n R t=0 R 't '70

was proven by Derman [2] for the denumerable case.

Corollary 1: Under the conditions of theorem 1, there is a M

such that

|8n(x) - ng| <M for all n,x

f t
Proof: Let M be such that |f(x)] <M . By (2) we have that

!
g<2M + gn(x). Again from (2), by letting R = R* we have that
|}
8 ->_ sn(x) - ZM . QED-
Fix some state - call it G - and let
(4) £.(x) = g (x) - g (0) all n,x

One has from (3) that

(5) Boy1 (0) = 8,(0) + £ (x) = mlicn {C(x,k) + [ fn(y)dP(ylx,k)}
yex

We shall now determine sufficient (and in the denumerable case
necessary and sufficient) conditions for the existence of a bounded

Baire function f(x) and a constant g satisfying (1).

Theorem 2: If {fn} is a uniformly bounded equicontinuous family of

functions then

(1) there exists a bounded continuous function f(x) and a constant

g satisfying (1).




(11) 1lim (gn+1(x) - gn(x)) = g for all xex.

n—»oo
Proof: By the Ascoli Theorem there exists a subsequence {f_}
and a continuous function f such that f_ (x) -~ f£(x). Now gn+l(0) - gn(O) '
is bounded (since costs are bounded) and so we can also require that
3nk+l(0) - gnk(O) + g. Hence by (5) and the bounded convergence theorem

we have that g + f(x) = min {C(x,k) + / f(y)dP(ylx,k)}
yex

For any subsequence {n'} of {n} there is a sub-subsequence {n !}
such that lim(gn"+l(0) - gn"(O))exists. By the above this limit must
be g. Thus g = lim (gn+1(0) - gn(O)). The result follows since 0 is
any arbitrary sta:e. QED.

If % is denumerable, then {fn} can always be taken to be equicontinuous

by considering the discrete topclogy. We thus have

Corollary 2: If x is denumerable, then a necessary and sufficient condition
for the existence of a bounded function f(x) and constant g satisfying (1)

is that there is a M < = guch that Ign(x) - gn(O)I < M for all n,x,

Proof: Sufficiency follows from the sbove theorem and necessity follows

from Corollary 1. QED.

For any policy R, Be(0,1), let y(x,8,R) = I BtER[C(xt’At)'xo = x].
t=0

A policy R, such that w(x,B,RB) = min 4 (x,B,R) for all xex 1is said to be

: R

B-optimal,
We shall need the following result given by Blackwell [1]:
If A 1s finite, and C(.,:) is bounded then, for each Be(0,1), there is

a stationary deterministic policy R, which is B-optimal. Furthermore

B8
¢(x,B,R8) is the unique solution to




(6) w(x,B,RB) = min {C(x,k) + B / W(y,B,RB)dP(ylx,k)}
keA yex

and any policy which, when in state x, selects an action which minimizes
the right side of (6) is B-optimal,

Fix some state - call it 0 - and let
(7) fB(x) = ¢(x’B’RB) - w(O’B’RB)
then
(8) gg * fg(x) = min {C(x,k) + B /S fs(y)dP(ylx,k)}

k yex

where

SB - (1-6) 1/ (O,B’RB)

In analagous fashion to Theorem 2 we have

Theorem 3: If {fB} is a uniformly bounded equicontinuous family of

functions then
(1) there exists a bounded continuous function £(x) and a constant
g satisfying (1).

(11) (l-S)VB(X) -~ g as B+ 1 for all xex.

Proof: Same as proof of Theorem 2.

For any stationary deterministic policy R let x(R) be the action
.. chooses when in state x. We say that I%m Rn = R if, for each x,
there exists N < = such that x(Rn) = x(R) for ail n Z N

The following was proven in (4] for denumerable . The proof

for arbitrary » is identical




Theorem 4: Under the conditions of Theorem 3

(1) for some sequence B, * 17, R* = lim RB
3 1

(11) 1f R = 1lim RB , where Br » 1 then R is optimal - i.e.
r r

¢(x,R) = g for all xex.

The following two conditions were given by Taylor {5] to prove
equicontinuity of (fB} in the special :case of a replacement process:
(a) For every keA, C(-,k) is continuous.

(b) For every xex, kcA, P(|x,k) 1s absolutely continuous with respect
to some o-finite measure . on B and it possesses a density p(ylx,k)
also assumed to be a Baire function in x. Furthermore, for every

xe%, keA

Hm [ |p(ylx,k) - plylx',k)|du(y) = O
x'*x

Theorem 5: If conditions (a) and (b) are satisfied then

(1) |fe(x)| < M for all x,8 = {fe} is equicontinuous

(11) Ifn(x)| < M for all x,n = (fn} is equicontinuous

Proof: Follows directly from (5) and (8) and conditions (a), (b).

A sufficient condition for the uniform boundedness of {f_: 1is

B8
given in [4].
3. Reduction of Average Cost Case to Discounted Cost Case
We shall need the following assumption
Assumption (I): There is a state - call 1t 0 - and a - 0, suzh that
PX .\ = o|xt =x, 6, =k} _ o for all x:x, keA.
7
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For any process satisfying the above Assumption consider a new
process with identical state and action spaces, with identical costs,

but with transition probabilities now given by

M for 0*3
l-a
P'(B|x,k) = < BeB
M for OcB
l1- a

-

L]
Let ¥ (x,B,R) be the total expected B-discounted cost, and let

!
RB be the B-optimal policy, all with respect to the new process.
]

] ] ] ]
Letting £ (x) = y (x,l—a,Rl_a) -y (0’1-°’R1-a) we have by (8) that

(9)  av (0,1-a,R) + £ (x) = min {C(x,k) + (1-a) / £ (y)dP (y|x,k)}
k yex

- min (CGx,k) + /£ (y)dPly|x,0))
k yeX

And thus the conditions of Theorem 1 are satisfied. It follows that
g = aw'(O,l-a,Ri_a) and the optimal average-cost policy is the one
which selects the actions which minimize the right side of (9). But
it is easily seen that Ri_a does exactly this. Hence the optimal
average cost policy 1s precisely the l-a-optimal policy with respect
to the new process; and the optimal expected average cost per unit
time is aw'(O,l-a,Ri_a).

The above result was proven in [4] for the denumerable case by

]
showing that ¢(x,R) = oy (0,1-a,R) for any stationary policy R.




R

This result also holds for arbitrary x. However this in itself

!
does not show that R is optimal. (It does in the denumerable

1-a
case because it can be shown that Assumption (I) implies that {fB}
is uniformly bounded and thus by Theorem 3 there exists a

stationary ceterministic policy which is optimal.)

4, Concluding Remarks

Results given in [4] which dealt with e-optimal policies and
replacement processes (Sections 3 and 4) carry over to the more general
spaces X considered here. The proofs are identical (with integrals

replacing sums in the obvious places).




ey Sy Gmy) GE) N e

(1)

(2]

(3]

(4]

(5]
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